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Abstract

The paper analyzes a microscopic regime of strain, different from the one conventionally considered, that presumably takes place in
swollen polymers showing strong microscopic phase separation, such as ion-exchange resins in water. Such systems show linear dependence
of the elastic pressure on swelling in contrast to the Flory—Rehner theory and its modifications. The present work proposes a simple model
that predicts this kind of behavior. Swelling is considered as a non-affine ‘inflation” of the hydrophobic matrix by small aggregates of water
molecules (‘droplets’) adsorbed by highly hydrophilic groups, whereas the macroscopic dimensions of the sample change as a result of the
compression of the ‘films’ separating the droplets. This compression is then analyzed along the classical lines. In the case of the Dowex resins
a partial test of the model based on the reported shear moduli showed reasonable agreement with experiment. © 2001 Elsevier Science Ltd.

All rights reserved.
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1. Introduction

Swelling of a polymer network in a solvent is tradition-
ally viewed as the balance between the osmotic and con-
tractile (elastic) pressures. These are defined, respectively,
as the derivatives of the free energies of mixing and network
deformation with respect to the volume of the swollen
network [1-3]. In many cases the Flory—Huggins theory
provides a fairly good approximation for the free energy
of mixing, while the Flory—Rehner theory is often used to
calculate the elastic term [1,4]. These classical theories are
based on the assumptions of random mixing (dilution) of
solvent and monomers (the Bragg—Williams approximation
[2]) and affine, i.e. linear in the macroscopic strain, defor-
mation of the chains comprising the network.

The adequacy of these assumptions can be seriously ques-
tioned when a macroscopically homogeneous swelling is
accompanied by a strong microphase separation. This may
occur when a polymer matrix swells in a solvent, which is a
very poor solvent for the matrix itself but is forced into it by
strong interactions with some groups chemically attached to
the polymer backbone. Limited swelling of many natural
and synthetic hydrophilic polymers in polar solvents may
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follow this pattern. An almost ideal example of this behavior
is the swelling of chemically crosslinked ion-exchange
resins [5] or physically crosslinked (semicrystalline) iono-
mers [6] in very polar solvents, such as water or methanol.
These materials possess a very hydrophobic hydrocarbon
or fluorocarbon backbone with chemically bound highly
hydrophilic ionic (e.g. sulfonic) groups. The groups them-
selves and the adsorbed water molecules strongly tend to
associate and actually form a separate phase dispersed in the
backbone polymer matrix, which always remains micro-
scopic due to the constraints on association imposed by
the martix. Although the recent theories [7,8] indicate that
microphase separation may occur under certain conditions
for many crosslinked polymer—solvent systems, the above
case is unique in that such separation is, in fact, always
present. In ionomers the evidence for aggregates comprising
many groups and hundreds of water molecules has been
conclusive, e.g. by X-ray scattering [6,9] or water diffusion
studies [10]. For ion-exchange resins the constraints on
association are seemingly more severe, yet evidence for
the existence of ‘water pools’ as large as several nanometers
has been recently reported [11].

Boyd and Soldano [12] and Glueckauf [13] determined
the elastic pressure for a series of swollen polystyrene—
divinylbenzene (PS—DVB) sulfonates from vapor sorption
isotherms. The idea is schematically presented in Fig. 1.
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Fig. 1. The principle of measuring the elastic pressure in swollen ion-
exchange resins of various crosslinking (differential swelling).

Solvent sorption by differently crosslinked resins of the
same capacity and ionic form swollen to the same degree
was analyzed at different water activities in relation to a
reference polymer. An essentially identical method was
later applied to non-polar polymer—solvent systems and
was given a name ‘differential swelling’ [14—19]. Ideally,
a non-crosslinked polymer (solution) should be used as a
reference, as has been done in the case of non-polar system,
but for technical reasons the use of a weakly crosslinked
resin (0.5—1% DVB) was preferable. The swelling pressure
at different degrees of swelling could be calculated as:

pa = (RT/Vy,) In(a,/ag), ey

where V,, is the molar volume of the solvent, a; the equi-
librium water activity (relative humidity) at a given solvent
content in a resin sample and a, is the water activity at the
same solvent content in the reference resin (see Fig. 1).
Since the content of the hydrophilic groups and, pre-
sumably, their distribution in the resin, are similar, all
contributions, excluding only the elastic energy of the
matrix, should effectively cancel out at the same water
content. Importantly, so should, to a substantial degree,
the electrostatic and interfacial effects, significant in such
resins. For all resins the swelling pressure was found to be
zero for the dry resin and was proportional to the swelling.
This shows in the merge of the isotherms at low activities
(Fig. 1) and may be expressed as follows [5,12]:

Pa = BAV/V(), (2)

where AV is the change of the resin volume upon swelling,
Vi the volume of the resin at p; = 0 and B is a parameter
depending only on the degree of crosslinking (DVB
content). Thus B was demonstrated to be independent of

the ionic form of a resin. Using the same experimental
method, Nandan and Gupta [20] confirmed this conclusion
by measuring swelling of resins in various forms in water
and methanol and also showed B to be independent of the
solvent.

The classical theory and more recent developments
are actually unable to predict the behavior given by
Eq. (2). The extensive analysis presented by Gottlieb
and Gaylord [21] demonstrate that all of them yield a
finite elastic pressure at zero swelling, i.e. zero solvent
content. Admittedly, these authors’ analysis was in terms of
a different parameter that nevertheless was related to the
elastic pressure in a straightforward way. Despite some
peculiarities that appeared quite difficult to explain theo-
retically, for non-polar polymers and solvents the measured
elastic pressure at zero swelling was indeed found finite
in good agreement with the theory.

In contrast, the behavior of the Dowex resins strongly
deviates from this pattern. Our basic suggestion is that the
discrepancy results from the assumption of affinity, i.e.
essentially, similarity of the macroscopic and microscopic
strain. This similarity is closely related to the approximation
of random mixing, which is clearly incompatible with what
is known about the microstructure of swollen resins and
ionomers. Concerning the thermodynamics of mixing, it
was realized long ago that, due to the too large enthalpic
effects that destroy the random order, swelling of this type is
more appropriately described in terms of adsorption of
water by the ionic groups rather than dilution of the matrix
of the Flory—Huggins type [22,23]. The inadequacy of the
elastic term of the classical theory for calculating the
contractile pressure in this case has drawn much less atten-
tion so far. Hsu and Girke [24] and Mauritz and Rogers [25]
presented a new approach to calculating the elastic con-
tribution in swollen Nafion ionomers. The elastic energy
per aggregate was calculated as that of a spherical cavity
expanding to an infinite elastic medium characterized by
some effective modulus, constant or changing with total
water content in yet undetermined manner. This pheno-
menological approach has the advantage of correctly pre-
dicting a linear change of the elastic pressure with the
solvent content in the low swelling limit, an important
fact that passed unnoticed by the authors. However, the
neglect of the interaction of the aggregates upon expansion
seems to be a too large simplification. In addition, the
approximation of a Hookean medium used to calculate the
elastic energy is not precise for a polymer as the bulk.

This paper presents a simple model where the interaction
of aggregates embedded in a polymer bulk is explicitly
considered. The elasticity calculations are based on the clas-
sical theory of polymer elasticity, although other models
may also be readily incorporated. The microscopic picture
of strain, however, is essentially non-affine, which removes
the discrepancy obtained while applying the classical theory
to such systems in a conventional way and leads to qualita-
tively correct results.
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2. Theory

The Flory—Rehner [1,4] theory considers an affinely
deformed network of N Gaussian chains and gives the
following expression for the free energy of deformation
per unit volume of undeformed network:

Fo = 122G (clnA; + A} — 1), (3)

where G = NkT/V,, V, the volume of undeformed network
and A; is the deformation ratio along the axis i. For iso-
tropic swelling A; = ¢, 13 for all i, where ¢,, is the volume
fraction of the polymer, and the swelling pressure p, is
obtained from Eq. (3) by differentiating with respect
to 1/¢,:

pa = Gy — cdy/2), 4)

Flory [26] has argued that the constant ¢ in the logarith-
mic term of Eq. (3) leading to the second term of Eq. (4)
should vary between O (phantom limit) and 1 (affine limit).
In either case the osmotic pressure always appears finite at
zero swelling. At moderate degrees of swelling, it should
remain nearly constant passing through a shallow maximum
in the Flory—Rehner theory (affine limit) or even decrease in
the phantom limit, in striking contradiction with the experi-
mental results on swollen Dowex resins.

To understand what might be the cause, let us consider
how a resin swells. The solvent phase in a swollen resin
consists of microscopic ‘droplets’ that grow as the degree
of swelling increases. The droplets are separated by ‘films’
of the polymer matrix. In the dry state the droplets are just
the hydrophilic groups or their aggregates. In the swelling
process the new water molecules increase the total volume
of the resin by joining the existing aggregates (partial
coalescence may also take place) but do not dilute matrix
to maintain the affine deformation of each chain. This
process resembles ‘inflation’ of the matrix rather than its
dilution. To describe that, we propose to replace the affine
deformation with the following (simplified) picture.

Starting from the dry state, we may subdivide the swollen
matrix to polyhedral cells using the Voronoi tessellation
(e.g. see Ref. [27]) with a droplet in the center of each
cell, as shown in Fig. 2. The films (faces of the polyhedra)
are thus assumed to look like flat and thick slabs. When the
droplets grow, they squeeze the films causing changes in
their dimensions, i.e. the surface area of the films grows
and the thickness decreases. For flat films we may assume
the strain in the films to be uniaxial compression. Under
swelling, the idealized polyhedral cells are assumed to
deform in such a way that their dimensions will change
but not their shape (see Fig. 2). We have therefore replaced
the affine deformation of each chain in the Flory—Rehner
theory by the affine deformation of the cells. Finally, despite
the fact that the films are microscopic objects, we assume
that the volume of a film remains constant and apply Eq. (3),
just as to macroscopic polymer samples [1,3]. We assume

a d

Fig. 2. The scheme of subdivision of the swollen material to polyhedral
Voronoi cells. The bulk matrix is shown in gray, the hydrophilic groups
in black and water in white; (a) Subdivision of a dry resin to polyhedral
cells using the Voronoi tessellation (two-dimensional representation);
(b) An imaginary single dry cell with an aggregate of dry hydrophilic
groups in the center; (c) Idealized polyhedral structure of the dry cell (b);
(d) Idealized structure of the cell (c) after swelling.

droplets to be large enough and the swelling not too high
(say up to several tens percent, which is typical for resins and
ionomers) so that the films are not reduced to separate chains.

It may seem that spherical rather than polyhedral geo-
metry of the droplets would be a more justified and natural
choice. In this case, however, the model will loose all its
simplicity since a non-uniform strain with non-zero shear
components will have to be introduced and the model will
be dependent on the size of the droplets and the coalescence
effects, as the models of Refs. [24,25]. In contrast, the flat
geometry has none of these complications while retaining
most important qualitative features.

We may calculate now the elastic energy of the swollen
sample. The changes of the macroscopic dimensions of the
whole sample occur as a result of the changes of the dimen-
sions of the films and cells under compression. The defor-
mation ratios of a film along the axes parallel to the film
(face) should be just the macroscopic swelling ratio
A=, I3 whereas the one along the axis normal to the
film is A 2. By summation over all films we obtain from
Eq. (3):

Foq=12G'2N + 174 5)
or, alternatively,

Fgq=12G'Q2¢,”" + ¢, (6)

where G’ = N'kT/V, and N’ may be interpreted as the effec-
tive number of the polymer chains in all films. It is expected
to be somewhat lower than N due to the smaller strain in
vertices and edges of the cells. Differentiating with respect
to 1/¢,, we obtain the elastic pressure

pa=23G'"(&)" = &), )

Remarkably, the value of the parameter ¢ in Eq. (3) does
not affect this result due to the constancy of the volume
occupied by the polymer, just as for deformed dry networks.
The elastic pressure calculated using Eq. (7) (assuming
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Fig. 3. The normalized swelling pressure calculated using the Flory—
Rehner theory (Eq. (4) with ¢ = 1) and the present model (Eq. (7)) vs.
the degree of swelling.

N’ = N) plotted against the relative volume change is
shown in Fig. 3, the Flory—Rehner result (Eq. (4) with
¢ = 1) being also presented for comparison. It is seen that,
unlike the Flory—Rehner equation and in agreement with the
empirical Eq. (1), the new equation predicts that the elastic
pressure rises approximately linearly with the degree of
swelling up to about ¢ =1 — ¢, = 0.2. The leveling off
for higher degrees of swelling is obviously due to the
Gaussian approximation used to derive the expression for
the elastic energy (Eq. (3)).

It is easy to show that for small ¢(¢p << 1) the elastic
pressure may be approximated by:

pa = 413G’ p = 413G’ AV/V,,. 8)

This relation coincides with the functional form found
experimentally for the swelling of ion-exchange resins
(Eq. (2)).

It may be further assumed that N’ is merely the total
number of chains in the polymer phase, that is, N' = N.
This overestimate of the elastic pressure should be reason-
able in view of the crude model considered here. Comparing
Egs. (2) and (8) we obtain:

B = 4/3G. )

We would like to note that the use of Eq. (3) as a
starting point is not mandatory. Our main result is valid
(up to a constant factor) for any expression of the elas-
tic free energy of the type Fo =Y {(A;), where {(A) is
some function, in which case B = 2/3['(1) + {"(1)], where
prime denotes differentiation. For instance, assuming the
matrix to be an incompressible linearly elastic continuum,
i.e. {A) =G — 1)2 [28], G being the shear modulus,
Eq. (9) becomes exact for the whole range of swelling.

3. Comparison with experiment

We have seen, therefore, that, in contrast to the Flory—
Rehner theory, our model predicts the correct functional
form of the dependence of the swelling pressure on the
volume change due to swelling (Eq. (2)). It would be also
of interest to compare the experimental values of the para-
meter B to the ones calculated using the model. Unfortu-
nately, suitable experimental data are very scarce, the main
reason being that most data do not enable appropriate
separation of different contributions to obtain the elastic
energy or contractile pressure. We will therefore use the
previously mentioned results for Dowex resins [10,11,18]
and the data of Myers and Boyd [29]. Some of these results
have been presented in the form of the empirical equation
proposed by Gregor [30]: V = ap, + b, which, in effect,
coincides with Eq. (1) with B = b/a.

The principal problem arising with the Dowex-type resins
is the degree of crossliking so high that the Gaussian
statistics seems hardly applicable. Calculations of the
average chain length based on the nominal DVB content
and the additional factor 2/3 to convert the number of
monomer units in a chain to the number of random links
in polymethylene backbone show that the average chain
between two crosslinks contains only 1.25 and 20 random
links for the highest (25%) and lowest (2%) DVB contents,
respectively. Gusler and Cohen [31] offered a non-Gaussian
version of the classic model, but achieved only a moderate
improvement for (non-sulfonated) PS-DVB resins. A non-
uniform crosslinking in the course of copolymerization of
PS and DVB during preparation of the resins [32] comes as
an additional complication. As has been demonstrated both
theoretically [8] and experimentally [33,34], swelling fur-
ther enhances these static non-homogeneities resulting in
films (in the present terminology) higher crosslinked and
then more rigid than the matrix at average. We cannot there-
fore use the simple Gaussian formula B = 4/3NkT/V,
(cf. Egs. (3) and (9)) with N/V,, based on the nominal
DVB content. Apparently, a full test of the present model
cannot be performed using the above data. We may suggest
that such a test could be based on differential swelling
experiments carried out using low-crosslinked resins swol-
len at very low water activities to avoid excessive swelling
in order to stay within the range of applicability of the
model.

Nevertheless, we may attempt a partial test by noting that
it is the elastic component of the shear modulus G of the
matrix that we actually need for comparison (see also the
comment after Eq. (9)). Tiihonen et al. [35] have reported
recently the shear moduli of some swollen resins. These data
should be treated with some care since not readily separable
electrostatic contributions may appreciably increase the
mechanically measured modulus, particularly, in less polar
solvents. Tiihonen et al. suggested to take as the closest
estimates of G the values of moduli obtained for water-
swollen samples, in which the electrostatic interactions are



V. Freger / Polymer 43 (2002) 71-76 75

10000
L
1000
Oeg ¢
2 100 N
o o
L
)
10 | & DS
O SM
* —— Gaussian
1 ‘
1 10 100

Nominal DVB content, %

Fig. 4. The parameter B for some PS—DVB ion-exchange resins as a func-
tion of the nominal DVB content: DS — calculated from the differential
swelling experiments [12,13,20,29]; SM — calculated from the experimen-
tally measured shear moduli of the swollen resin normalized to the dry resin
[35]; Gaussian — the estimates based on the nominal DVB content and
Gaussian chains.

presumably minimized. They then used then the factor d)l',/ 3

to get the modulus of the dry matrix G,. We note, however,
that this factor pertains to the classical model and follows
from the fact that the deformation ratios in Eq. (3) change
due to swelling by the same factor q[)}l,/ 3 for all three dimen-
sions and thus the modulus is reduced accordingly [1,3]. In
the present model these ratios should differ for a given
film. By averaging over all film orientations relative to a
macroscopic strain we obtain for small strains the factor
1/3(dy” + 2¢, °7) (see Appendix). Although the legitimacy
of using this factor for non-Gaussian networks is question-
able, we preferred to use this (relatively small) correction to
reevaluate G, based on the swelling reported in Ref. [35].
Fig. 4 shows the B values obtained from the differential
swelling data of Refs. [12,13,20,29] (filled symbols) and
the estimates of B based on Eq. (8) with G = G, (open
symbols). The values based on G, seem to go somewhat
higher, which can presumably be explained by the over-
estimate of the numerical coefficient in Egs. (8) and (9)
and possible increase of the measured modulus by the
electrostatic and interfacial effects.

For comparison, Fig. 4 also shows the Gaussian pre-
diction (solid line) calculated using Eq. (9) with G =
NkT/V, based solely on the nominal DVB content.
Expectedly, the results rapidly diverge as the degree
of crosslinking increases and the deviations from the Gaus-
sian behavior become stronger. It is worth noting that this
rapid increase of B far beyond the Gaussian behavior
provides justification for the use of weekly crosslinked
resins as references.

4. Conclusions

We have seen therefore that the classical Flory—Rehner
theory fails to describe the experimentally observed depen-
dence of the elastic pressure on the volume of the system for
swelling accompanied by microphase separation due to
strong enthalpic effects. Thus it predicts for zero solvent
content a finite elastic pressure that remains nearly constant
as the solvent content increases, while experimental results
show linear dependence with zero swelling pressure at zero
solvent content. We proposed a picture of microscopic
strain, different from the classical theory, by replacing the
affine deformation of the chains assumed in the classical
theory with the affine deformation of the cells enclosing
the aggregated solvent molecules. The most important result
was that we could obtain expressions for the elastic energy
and contractile pressure that gave the correct dependence on
the solvent content. The agreement was up to a constant
parameter B that relates the elastic pressure to the relative
volume change. This experimental parameter is predicted to
be proportional to the elastic modulus of the matrix.

The values of B measured for differently crosslinked
Dowex resins showed a fair agreement with the estimates
based on the reported shear moduli. Some discrepancies
could be explained by the approximations made in the
model and the uncertainties of the elastic data resulting
from the unaccounted for contributions. The estimates
based merely on the number of chains per unit volume
calculated from the nominal DVB content were found
seriously in error, in particular, for highly crosslinked
samples. This divergence was well expected in view of
the strong deviations from the Gaussian statistics inevitable
for a heterogeneous network of chains just a few random
links long.

We would like to stress the approximate character of the
present model. The complete model should give a better
account for both the chain statistics (e.g. for short chains)
and the non-uniformity of strain. We also emphasize that
the model is limited to low and moderate swelling, where
the amount of solvent adsorbed is comparable with that
of the polymer. Thus it is not suitable for highly swollen
gels, where the chains get completely separated by the
solvent and the microphase separation disappears, in
which case the assumption of affine deformation of the
chains may be fully justified. Nevertheless, the model
seems to give qualitatively correct results and might be a
step towards a predictive theory for the swelling equilibria
of the type considered here.

Appendix A. Elastic energy of a microscopically phase
separated swollen network under mechanic deformation

We take the situation when a macroscopic sample is
simultaneously swollen to a ratio A = ¢, 3 and mechani-
cally deformed. The principal extension ratios for the latter
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source of strain are given by a vector ¥ = (v,7%,7;). The
deformation of a microscopic film as a result of swelling
is given by A= (A AA3) = (/\72)0\), where the micro-
scopic axes 1, 2 and 3 are, in general, different from the
macroscopic axes x, y and z and chosen so that axis 1 is
normal to the film and axes 2 and 3 lie in the plane of the
film. The total strain & = (a,a ;) of the film is super-
position of the strains caused by swelling and mechanic
deformation. Its components may be found as:

a; = YA, (A1)

where i is x, y or z and A; are the components of the strain
caused by swelling, which after transformation to the
macroscopic coordinate system (x y z) will be given by:

2= Z A} cos’ By, (A2)
J

where the summation is over the microscopic axes j = 1,2
and 3 and B; is the angle between axes i and j.

The components of total strain o may be substituted to
Eq. (3) to obtain the stored free energy of deformation.
Since the derivation of the value of the modulus involves
differentiation of Eq. (3), only the sum > a,~2 will be rele-
vant, as the other terms will be constant assuming the
polymer incompressible. Inspection of Egs. (Al) and (A2)
shows that this sum will contain terms of the type
3/,2)\,2 cosz,B,:,-. In order to obtain the macroscopic modulus
we have to average the sum over all possible orientations of
the film relative to the macroscopic coordinates. Under
swelling alone the sample will remain macroscopically
isotropic and the distribution of orientations will be spheri-
cally symmetric. We may assume the spherical symmetry be
also approximately retained under small mechanical strains.
Then, after averaging over all orientations, each term
ﬁ)\jz cosz,B,»j in the sum > aiz will be replaced with

2 ) ) ) )
. YA} cos®By sinf; dB; = 1397 A;. (A3)

From Egs. (A1), (A2) and (A3) we easily conclude that
for each i

af =135 D N =13y +2)7)

=13(dy" + 2¢, ). (A4)
The factor 1/3(¢y”° + 2¢,>”) is the same for all 7y, and

constant for given A or ¢, While the free elastic energy
(Eq. (3)) is expressed through the mechanical extension
ratios for a given swelling, the above factor may formally

relate the elastic energy of the dry network for swelling to

that of a swollen network, just as the factor qb;,/3 in the

classical model. Obviously, the same factor will apply for
the elastic moduli in the limit of small strain. Of course, in
general, the factor will be only approximate for large strains,
when the spherical symmetry is violated.
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